Characterizing the Indoor-Outdoor Relationship of Fine Particulate Matter in Non-Heating Season for Urban Residences in Beijing

نویسندگان

  • Lihui Huang
  • Zhongnan Pu
  • Mu Li
  • Jan Sundell
  • Maosheng Yao
چکیده

OBJECTIVE Ambient fine particulate matter (PM2.5) pollution is currently a major public health concern in Chinese urban areas. However, PM2.5 exposure primarily occurs indoors. Given such, we conducted this study to characterize the indoor-outdoor relationship of PM2.5 mass concentrations for urban residences in Beijing. METHODS In this study, 24-h real-time indoor and ambient PM2.5 mass concentrations were concurrently collected for 41 urban residences in the non-heating season. The diurnal variation of pollutant concentrations was characterized. Pearson correlation analysis was used to examine the correlation between indoor and ambient PM2.5 mass concentrations. Regression analysis with ordinary least square was employed to characterize the influences of a variety of factors on PM2.5 mass concentration. RESULTS Hourly ambient PM2.5 mass concentrations were 3-280 μg/m3 with a median of 58 μg/m3, and hourly indoor counterpart were 4-193 μg/m3 with a median of 34 μg/m3. The median indoor/ambient ratio of PM2.5 mass concentration was 0.62. The diurnal variation of residential indoor and ambient PM2.5 mass concentrations tracked with each other well. Strong correlation was found between indoor and ambient PM2.5 mass concentrations on the community basis (coefficients: r ≥ 0.90, p < 0.0001), and the ambient data explained ≥ 84% variance of the indoor data. Regression analysis suggested that the variables, such as traffic conditions, indoor smoking activities, indoor cleaning activities, indoor plants and number of occupants, had significant influences on the indoor PM2.5 mass concentrations. CONCLUSIONS PM2.5 of ambient origin made dominant contribution to residential indoor PM2.5 exposure in the non-heating season under the high ambient fine particle pollution condition. Nonetheless, the large inter-residence variability of infiltration factor of ambient PM2.5 raised the concern of exposure misclassification when using ambient PM2.5 mass concentrations as exposure surrogates. PM2.5 of indoor origin still had minor influence on indoor PM2.5 mass concentrations, particularly at 11:00-13:00 and 22:00-0:00. The predictive models suggested that particles from traffic emission, secondary aerosols, particles from indoor smoking, resuspended particles due to indoor cleaning and particles related to indoor plants contributed to indoor PM2.5 mass concentrations in this study. Real-time ventilation measurements and improvement of questionnaire design to involve more variables subject to built environment were recommended to enhance the performance of the predictive models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Heating Season on Residential Indoor and Outdoor Polycyclic Aromatic Hydrocarbons, Black Carbon, and Particulate Matter in an Urban Birth Cohort.

Exposure to air pollutants has been associated with adverse health effects. However, analyses of the effects of season and ambient parameters such as ozone have not been fully conducted. Residential indoor and outdoor air levels of polycyclic aromatic hydrocarbons (PAH), black carbon (measured as absorption coefficient [Abs]), and fine particulate matter <2.5 μm (PM)(2.5) were measured over two...

متن کامل

Evaluating the Long-Term Health and Economic Impacts of Central Residential Air Filtration for Reducing Premature Mortality Associated with Indoor Fine Particulate Matter (PM2.5) of Outdoor Origin

Much of human exposure to fine particulate matter (PM2.5) of outdoor origin occurs in residences. High-efficiency particle air filtration in central heating, ventilating, and air-conditioning (HVAC) systems is increasingly being used to reduce concentrations of particulate matter inside homes. However, questions remain about the effectiveness of filtration for reducing exposures to PM2.5 of out...

متن کامل

Cardiovascular and lung function in relation to outdoor and indoor exposure to fine and ultrafine particulate matter in middle-aged subjects.

This cross-sectional study investigated the relationship between exposure to airborne indoor and outdoor particulate matter (PM) and cardiovascular and respiratory health in a population-based sample of 58 residences in Copenhagen, Denmark. Over a 2-day period indoor particle number concentrations (PNC, 10-300 nm) and PM2.5 (aerodynamic diameter<2.5 μm) were monitored for each of the residences...

متن کامل

Prescribed burns and wildfires in Colorado: impacts of mitigation measures on indoor air particulate matter.

Wildfires and prescribed burns are receiving increasing attention as sources of fine particulate matter (PM2.5). The goal of this research project was to understand the impact of mitigation strategies for residences impacted by scheduled prescribed burns and wildfires. Pairs of residences were solicited to have PM2.5 concentrations monitored inside and outside of their houses during four fires....

متن کامل

Effects of Floor Level and Building Type on Residential Levels of Outdoor and Indoor Polycyclic Aromatic Hydrocarbons, Black Carbon, and Particulate Matter in New York City.

Consideration of the relationship between residential floor level and concentration of traffic-related airborne pollutants may predict individual residential exposure among inner city dwellers more accurately. Our objective was to characterize the vertical gradient of residential levels of polycyclic aromatic hydrocarbons (PAH; dichotomized into Σ(8)PAH(semivolatile) (MW 178-206), and Σ(8)PAH(n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015